
EEE4114F - Compressive Sensing

STNJOS005

April 2019

1 Introduction

Compressive sensing (CS) is a sensing modality, used to obtain compressed signal information at the time
of sensing [1]. The idea stems from the fact that many signals we capture have an underlying sparsity.
Concretely, if we consider a signal as an N × 1 column vector, then for K elements the signal is 0, where
K << N . For example, sinusoidal waves in the time domain become spikes in the frequency domain,
images become sparse in the discrete cosine transform (DCT) and wavelet domains, etc. This sparseness
is often used in compression. For example, after capturing a large raw image, we often compress to JPEG
(using the DCT transform) or JPEG-2000 (using the wavelet transform), throwing away > 90% of the image
while maintaining satisfactory quality. The question therefore arises whether it is possible to capture this
compressed signal at the time of sensing. That is, instead of capturing a rich signal and then compressing it,
can we capture a compressed signal and reconstruct it as if we had captured a rich signal? This has become
increasingly important as we move further into an age where we generate far more data than we can store
or process efficiently [2]. Is it possible to collect less data, but still obtain satisfactory results? Traditional
signal processing, which follows the Nyquist-Shannon sampling theorem [3], states that this is not possible
[4]. However, as has been demonstrated with CS, it is possible to sample at sub-Nyquist rates and still obtain
excellent results.

CS was introduced in 2004 by Donoho, Candes, Romberg and Tao [5][6][7]. Despite its young age, the
field has seen an explosion in research, acquisition techniques, reconstruction techniques and applications.
CS has found widespread use in areas where sensing can be very expensive, areas where a limited number of
samples can be taken and/or where sensing takes significant time. A good resource containing much of the
literature can be found at [8]. In this investigation I aim to use some of these techniques to investigate how
CS can be applied for the purpose of image reconstruction.

2 Aim

This report has three aims:

1. To understand compressive sensing, and how it is possible to sample at sub-Nyquist rates.

2. To present a brief literature review of CS reconstruction algorithms.

3. To use CS acquisition and reconstruction strategies to sample and reconstruct 2D images.

3 How CS works

3.1 Acquisition [9] [4] [1]

Consider a signal x, which we consider as a N × 1 column vector in RN with elements x[n], n = 1, 2, ..., N .
Any signal can be represented by a linear combination of its basis vectors - in this case, an orthonormal basis
Ψ. Then, we can express x as

x =

N∑
i=1

siψi or x = Ψs (1)

1

Figure 1: RIP keeping Euclidean distances the same after sensing.

where s is an N × 1 column vector of weighting coefficients. In other words, x is a signal in the time domain,
and s is the same vector in the Ψ domain. One of the keys to CS is to understand that in this domain s is
sparse. In compression, we acquire x, compute the coefficients, keep K large coefficients (discarding the rest)
and then encode these largest K coefficients. Instead of acquiring the full signal x, we would like to sample
a portion of the signal (M measurements, where M < N). If we have an M × N sampling matrix Φ, then
we can construct a measurement column vector y such that

y = Φx = ΦΨs = Θs (2)

where Θ = ΦΨ is an M × N matrix. In general, Φ is rank deficient (M < N). Consequently, there are
infinitely many xs that can give y. However, if we remember that x is sparse, then the problem becomes
simplified. In this sparse case, y is just a linear combination of K columns of Φ whose locations correspond
to the non-zero entries of x. However, we don’t know where the non-zero entries are. We are therefore faced
with the challenge of designing a sensing matrix Φ which, if K columns are taken arbitrarily, are full rank.
Further, we want those columns to be close to orthogonal to one another - this guarantees stable recovery.
This is known as the restricted isometry property (RIP):

1− δk ≤
‖Θx‖2
‖x‖2

≤ 1 + δk (3)

where δk is a known constant and x is a vector having the same k-nonzero entries as x. ‖ · ‖2 represents the
l2 norm, where the lp norm is defined as:

lp : ‖x‖p = (

n∑
i=1

‖xi‖p)
1
p (4)

Concretely, the RIP property states that sampling x with Φ approximately preserves the Euclidean
distances between elements of x. This can be seen in figure 1 [10].

This is important, because when we take compressive measurements we don’t want measurements to
‘overlap’, or be confused with one another. That is, during the sampling of x with Θ, we don’t want our
measurements to be mapped to the same point. In other words, we want to preserve the distances between
measurements to maintain their uniqueness. In practice, determining δ is difficult [1]. In the literature, δ is
often determined empirically, and different values are recommended for different algorithms. An alternative
approach to ensure stability is to ensure that the measurement matrix Φ and the sparsifying matrix Ψ are
incoherent. Coherence is a measure of correlation among elements of matrices and is defined as

u(φ, ψ) =
√
n max

1≤i,j≤n
|〈φi, ψj〉| (5)

2

where the range of coherence is u(φ, ψ) ∈ [1,
√
n]. If Φ and Ψ contain correlated elements, the coherence is

large. In general, we desire maximal incoherence (i.e. minimal coherence). For example, spikes and sinusoids
are maximally incoherent. Unfortunately, designing a matrix with these properties is an NP-hard problem.

Fortunately, it turns out that many naturally occurring matrices fulfill these properties! For example,
independent and identically distributed (iid) random variables (Gaussian, Bernoulli, etc.) obey the RIP
property with high probability provided

M ≥ cKlog(
N

K
) (6)

Where c is a small constant. Further, due to the nature of iid Gaussian distributions, the matrix Θ = ΦΨ is
also iid Gaussian (and therefore also obeys the RIP property) regardless of the sparsifying basis Ψ chosen1.
It is for this reason that the random Gaussian matrices are thought of as universal. This leads to a surprising
result: in order to get good measurements, we should acquire correlations with random wave-forms!

3.2 Reconstruction [9] [4] [11] [2]

Consider again the linear algebra problem to be solved in (2). What we see is that there are infinitely many
solutions (that is, there are infinitely many s’ that satisfy y = Θs’). As a reminder, this is because Θ is an
M ×N matrix, and in the case of CS M < N . Therefore, Θ is rank deficient. The challenge is therefore to
find some s’ that is the sparsest representation of s. This presents an optimization problem. Typically, one
would minimize the l2 norm (using least-squares) thereby choosing the s with the minimum energy. However,
this yields poor results.

An alternative approach is to minimize the l0 norm - that is, the sum of absolute values of s. This
would give a perfect solution - however, it is an NP hard problem that requires exhaustive enumeration of
all combinations of nonzero entries in s.

The key insight developed in CS is that we can solve the l1 norm. To understand why, consider that
the sparse solution lies on along the axis of some higher-dimension plane. In the 3D plane, you can image a
sparse vector being (1, 0, 0), (0, 1, 0) or (0, 0, 1) - in all cases, it is easy to see that these solutions lie on one
of the dimension axes. Further, consider that the problem we are solving is a plane (see figure 2 [10]). We
are trying to find the solution on this plane that yields the sparest results.

Figure 2: Plane representing all possible solutions to (2)

The l2 norm can be visualised as a ball (see figure 3 [12]). What we see is that the solution which intersects
with this l2 norm (ŝ) is significantly far away from the true sparsest solution (s). In contrast, the l1 norm
can be thought of as a pointy diamond. We see that the intersection between the l1 norm and the true sparse
solution is much closer to the intersection between the l2 norm and the true sparse solution.

For accurate reconstruction, we therefore need to solve the l1 optimization problem:

ŝ = argmin‖s’‖1 such that y = Θs’ (7)

This method of reconstruction is known as basis pursuit and will be explored further in this literature
review. The complexity of solving such a problem is O(n3). Solving the l1 norm is estimated to be about
“30-50 times as expensive as solving the least-squares [l2 norm] problem” [11].

1random matrices are also largely incoherent with any fixed basis Ψ

3

Figure 3: Shape of different norms in 2 dimensions. The line represents the possible solutions we are searching
for. The true sparse solution is on the vertical axis. We see the intersection between the solution space and the
l1 norm is much closer compared to the solution space and the l2 norm. Using 0 < p < 1 is also appropriate,
but requires non-convex solvers to find the solution.

4 Literature Review

Broadly speaking, recovery algorithms can be put into 5 major categories: convex approaches, greedy algo-
rithms, bayesian frameworks, non-convex approaches and brute force methods [13].

4.1 Convex approach

Basis pursuit [14] is convex optimization problem which searches for the minimum l1 norm, subject to (7).
Basis pursuit depends on having noise free measurements. More robust recovery schemes that incorporate
noisy measurements include basis pursuit denoising (BPDN) [14], the Dantzig selector [15] and total variation
(TV) denoising [16].

BPDN searches for a solution having minimum l1 norm subject to:

ŝ = argmin‖s’‖1 such that
1

2
‖y−Θs’‖22 ≤ ε (8)

The Dantzig selector searches for a solution:

ŝ = argmin‖s’‖1 such that
1

2
‖y−Θs’‖2∞ ≤ ε (9)

Total variation denoising searches for a solution:

ŝ = argmin‖s’‖TV such that
1

2
‖y−Θs’‖22 ≤ ε (10)

where
‖x‖TV =

∑
i,j

√
|x(i+ 1, j)− x(i, j)|2 + |x(i, j + 1)− x(i, j)|2

4.2 Greedy algorithms

Greedy algorithms work by iteratively refining a solution. Each iteration, the solution is updated by finding
a solution that is more correlated with the measurements than before. The iterations end either when an
iteration limit is reached or when the generated solution approximates the real solution within some constant
error. Some well known greedy algorithms are matching pursuit (MP) [17], orthogonal matching pursuit
(OMP) [18], gradient pursuit (GP) [19] and COmpressive Sampling MP (CoSaMP) [20].

4

Matching pursuit algorithms work on the basis of being able to decompose a function, f , into the sum of
finitely many weighted functions (si) [21].

f ≈ f̂ :=

N∑
i=1

αisγi + r

where αi is some weight, sγi is a sparse vector found from the measuremnt matrix Θ and r is some residual.
The basis of these algorithms is [1]:

• Initialize a residual vector, r, to the measurement vector y. Initialize s, a solution set and γ, an index
set to be null vectors. A counter is initialized to 1.

• Search for a column in the measurement matrix (Θ) which is maximally correlated with the residual
vector. The index of the column is updated in γ.

• Update s with the respective column chosen from Θ.

• Update the residual (by subtracting the product Θγisi).

• Increment the counter, and continue looping until an iteration limit is reached or a desired value of the
residual is reached.

The difference between these algorithms is how s is updated. In MP, the correlation vector between the
residual and the measurement matrix is searched for the value with maximum correlation. A unit vector is
then constructed, which is 1 at this location and 0 everywhere else. This unit vector is then added to the
current sparse solution [1]. In such a way one coefficient weight is changed every iteration.

In OMP, the sparse solution is found by optimizing the correlation column [13]:

si = argmin‖r −Θγiyi‖2

In OMP, all the coefficients are updated every iteration (instead of just one, as in MP) [21]. This requires
more computation.

GP works by updating the solution set in a gradient direction. The direction chosen is that which
minimizes the same optimization problem in OMP [22].

CoSaMP is a parallel algorithm that works similarly to the above, but selects multiple columns of Θ each
iteration. These multiple columns are compared to the columns from the previous iteration, keeping only the
best columns after least squares optimization [1].

Pseudo-code for all of these algorithms can be found in [22].

4.2.1 Thresholding

Thresholding algorithms are another type of greedy algorithm by iteratively applying a thresholding operator
to multiple columns of Θ every iteration.

Iterative hard thresholding (IHT) [23] works according to:

s = nk(s+ λΘT (y −Θs)

where nk(·) is a thresholding operator and λ is some step size. The nk operator works by setting all but the
largest elements in a vector to 0 (leaving the remaining components unaffected) [22]. IHT does not always
converge.

Soft thresholding [24] works similarly to hard thresholding, except that the thresholding operator is
adaptive based on the values in s. Defining nθ as the soft thresholding operator, the form follows the same
as IHT, except nθ updates as [22]:

nθ(s) =


s− θ if s > θ

0 if |x| ≤ θ
s+ θ if s < −θ

5

4.3 Non-convex approaches

Non-convex approaches work by trying to minimize the lp norm, where 0 < p < 1. As can be seen in figure
3, lp norms where p is in this given range still gives a close approximation to the true sparse solution. This
approach requires fewer measurements as compared to minimizing the l1 norm [25][1].

4.4 Bayesian approach

Bayesian approaches assume that the signal belongs to some known probability distribution. The reconstruc-
tion problem therefore becomes a Bayesian inference problem, which can be solved using maximum likelihood
estimation (MLE) or maximum a posterio (MAP) estimation [1].

4.5 Brute force

Brute force methods work by searching through all possible solutions in an attempt to find the sparsest vector
s [13]. This may be appropriate for smaller data sets.

5 Method and l1 minimization

In order to reconstruct an image using l1 norm minimization, compressive samples first needed to be obtained.
As outlined in section 3, one way to do this is to simply use random measurements.

I chose to work in Python. I therefore used numpy’s [26] random choice generator to select K measure-
ments (without replacement). Because I was working with images, I used the DCT as my sparsifying basis
(the wavelet basis is also an appropriate choice). My images were obtained from [27].

One way to generate a 2D-DCT matrix (as required for the minimization problem) is to use the Kronecker
product [28].

Unfortunately, generating a Kronecker product is too computationally intense to run on larger images - it
would require far too much memory. I therefore broke down the test image into 16x16 blocks - I could generate
one 2D-DCT matrix that could then be applied to each of these blocks. For each block I randomly sampled
and solved the minimization problem (min‖s‖1 such that y = Θs). This was done using CVXPY [29],
although other solvers do exist - a list of solvers is available at [30]. For consistency with later reconstructions
I set an iteration limit of 200. I then reconstructed my image based on each of these smaller 16x16 blocks.
This is a similar to approach JPEG compression, which finds the DCT matrix for an 8x8 block, and then
iteratively applies that matrix (and compression) to a larger image [31] [32]. This process is embarrassingly
parallel, as each block can be processed independently of one another.

In my research, I came across [28], where the author had used a variation of the L-BFGS algorithm[33],
known as OWL-QN, for reconstruction. This is a dedicated method for fitting l1 regularized models that
exploits the sparsity of those models [33]. A Python wrapper for the algorithm can be found at [34]. I used
this wrapper for reconstruction.

I then investigated some of the other reconstruction algorithms using l1 magic [35], a set of Matlab scripts
released by some of the pioneers in CS alongside their first papers. I investigated minimizing TV with equal-
ity constraints (min TV(s) such that y = Θs), minimizing TV with quadratic constraints (min TV(s)
such that ‖(y−Θs)‖2 ≤ ε) and minimizing TV with the Dantzig selector (min TV(s) such that ‖(Θ∗(Θs−
y)‖∞ ≤ ε) [36]. For each of these. I chose an ε of 0.005, or an iteration limit of 200.

6

6 Results

Figure 4: Reconstruction using basis pursuit.

Table 1: Speeds of BP and OWL-QN reconstruction
Technique Sample percentage Time taken (s)
BP 10% 28.57
BP 20% 50.20
BP 50% 184.57
OWL-QN 10% 10.67
OWL-QN 20% 8.51
OWL-QN 50% 5.94

7

Figure 5: Reconstruction using OWL-QN.

Figure 6: Different reconstructions using variations on minimizing the TV.

8

Table 2: Speeds of TV minimization reconstruction
TV technique Time taken (s)
Minimization with equality 46.76
Minimization with quadratic constraints 53.43
Minimization with Dantzig selector 72.55

7 Discussion

7.1 Basis pursuit

Firstly, one notices that even with very low sampling of original images very good recovery is achieved. The
broad shapes and colours are recognizable. There are noticeable artifacts, which could be removed using
a filter. In addition, the effect of sampling in 16x16 blocks is clear - the recovered images clearly look
‘segmented’, in the sense that there are obvious boundaries between blocks.

One solution to this is to apply a blurring filter to smooth some of these edges. Another would be to use
a different reconstruction technique that is more robust, and does not have to break the image down into
blocks.

As expected, the quality of reconstruction improves with more samples.

7.2 OWL-QN

These recoveries are much smoother as compared to figure 4. This is because the image was not processed
in block segments. Once again, there are artifacts present. However, the recovery is still very good. This
method of reconstruction was faster than basis pursuit.

7.3 TV

Total variation yielded the poorest results. The recovered images are significantly blurred, although still much
better than classical reconstruction techniques that minimize the l2 norm. These reconstruction technique
was also slower than other techniques used.

Although the outputs look very similar, they are subtly different (when comparing element-by-element
the images have differences that cannot necessarily be seen with the naked eye).

8 Conclusion

I successfully acquired compressive samples of images by using random measurements. I was then able
to apply different CS reconstruction algorithms to recover the images from these compressive samples. I
investigated Basis Pursuit and OWL-QN using Python, and investigated TV minimization reconstruction
techniques using the l1 magic toolbox available for Matlab. In all cases the original image was successfully
recovered, although the degree of recovery ranged based on techniques and the number of random samples
acquired.

Given more time I would like to investigate the more robust reconstruction techniques (to deal with
noise). I would also like to investigate the outputs of parallelizing some of the algorithms, or implementing
some of the inherently parallel algorithms (such as CoSaMP). In addition, I would be interested investigating
different optimization solvers. Further, I would like to investigate some of the other reconstruction algorithms
to compare them against one another. Lastly, I would like to understand more of the maths behind CS - the
original papers are beyond my current abilities, but given more time I would like to grasp them fully.

Appendix - Code

8.1 Basis Pursuit

9

1 import imageio as im
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4 import s c ipy . f f t p a c k as s p f f t
5 import s c ipy . ndimage as spimg
6 import s c ipy as sp
7 import cvxpy as cvx
8 from t i m e i t import d e f a u l t t i m e r as t imer
9

10 de f dct2 (x) :
11 r e turn s p f f t . dct (s p f f t . dct (x .T, norm=’ ortho ’ , a x i s =0) .T, norm=’ ortho ’ ,
12 a x i s =0)
13

14 de f i d c t 2 (x) :
15 r e turn s p f f t . i d c t (s p f f t . i d c t (x .T, norm=’ ortho ’ , a x i s =0) .T, norm=’ ortho ’ ,
16 a x i s =0)
17

18 de f dctmtx (N) :
19 r e turn s p f f t . i d c t (np . eye (N) , norm=’ ortho ’ , a x i s =0)
20

21 de f dctmtx2 (N) :
22 r e turn np . kron (dctmtx (N) , dctmtx (N))
23

24 de f r e cove r patch (patch , sample matrix , ps i , pe rcentage samples) :
25 s i z e y , s i z e x = patch . shape
26 N = s i z e y ∗ s i z e x
27 K = round (N∗ percentage samples)
28 random samples = np . random . cho i c e (N, K, r e p l a c e=False)
29

30 # take samples
31 sample matr ix .T. f l a t [random samples] = patch .T. f l a t [random samples]
32

33 # measurements
34 y = patch .T. f l a t [random samples]
35

36 # theta = phi ∗ps i , where p s i i s DCT matrix and phi i s measurement matrix
37 theta = p s i [random samples , :]
38

39 s = cvx . Var iab le (N)
40 o b j e c t i v e = cvx . Minimize (cvx . norm(s , 1))
41 c o n s t r a i n t s = [theta ∗ s == y]
42 prob = cvx . Problem (ob j e c t i v e , c o n s t r a i n t s)
43 r e s u l t = prob . s o l v e (s o l v e r=cvx .ECOS, max i t e r s = 200)
44 r e turn np . array (s . va lue) . squeeze ()
45

46 or ig image = im . imread (’ . . / Images/ pepper .ppm ’)
47 dim y , dim x , channe l s = or ig image . shape
48

49 patch l ength = 16
50 p s i = dctmtx2 (patch l ength)
51

52 # sample matr ix i s phi
53 sample matr ix = 255∗np . ones (o r i g image . shape , dtype=” uint8 ”)
54 recovered image = 255∗np . ones (o r i g image . shape , dtype=” uint8 ”)
55

56 percentage samples = (0 . 1 , 0 . 2 , 0 . 5)
57

58 p l t count = 1
59 f o r sample in percentage samples :
60 s t a r t = timer ()
61 f o r co l ou r in range (channe l s) :
62 #sample matr ix [: , : , c o l ou r] . T. f l a t [random indeces] = or ig image [: , : , c o l ou r] . T. f l a t [

random indeces]
63 f o r i in range (0 , dim y , patch l ength) :
64 f o r j in range (0 , dim y , patch l ength) :
65 r e s u l t = recove r patch (or i g image [i : i+patch length , j : j+patch length , co l ou r

] ,
66 sample matr ix [i : i+patch length , j : j+patch length ,

10

co l ou r] ,
67 ps i , sample
68)
69 r e s u l t = r e s u l t . reshape (patch length , patch l ength) .T
70 r e s u l t = i d c t 2 (r e s u l t)
71 recovered image [i : i+patch length , j : j+patch length , co l ou r] = r e s u l t
72

73 end = timer ()
74 pr in t (end−s t a r t)
75

76 p l t . subplot (3 , 3 , p l t c ount)
77 p l t . imshow (or ig image)
78 p l t . t i t l e (” Or i g i na l image”)
79 p l t count += 1
80 p l t . subplot (3 , 3 , p l t c ount)
81 p l t . imshow (sample matr ix)
82 p l t . t i t l e (”{}% sampling ” . format (sample ∗100))
83 p l t count += 1
84 p l t . subplot (3 , 3 , p l t c ount)
85 p l t . imshow (recovered image)
86 p l t . t i t l e (”Recovery”)
87 p l t count += 1
88

89 p l t . show ()

1 % Written by : Jus t in Romberg , Caltech
2 % Email : jrom@acm . c a l t e c h . edu
3 % Created : October 2005
4 %
5 % Modif ied by Josh Ste in
6

7

8 path (path , ’ . / l1magic / Optimizat ion ’) ;
9 path (path , ’ . / l1magic /Measurements ’) ;

10 path (path , ’ . / l1magic /Data ’) ;
11

12 load peppers gray ;
13

14 n = 256 ;
15 N = n∗n ;
16 X = im ;
17 x = X(:) ;
18

19 % number o f r a d i a l l i n e s in the Four i e r domain
20 L = 22 ;
21

22 % Four i e r samples we are g iven
23 [M,Mh,mh, mhi] = LineMask (L , n) ;
24 OMEGA = mhi ;
25 A = @(z) A fhp (z , OMEGA) ;
26 At = @(z) At fhp (z , OMEGA, n) ;
27

28 % measurements
29 y = A(x) ;
30

31 % min l 2 r e c o n s t r u c t i o n (backpro j e c t i on)
32 xbp = At(y) ;
33 Xbp = reshape (xbp , n , n) ;
34

35 e p s i l o n = 5e−3;
36

37 % Dantzig r e c o n s t r u c t i o n
38 t i c
39 xp dantz ig = t v d a n t z i g l o g b a r r i e r (xbp , A, At , y , ep s i l on , 1e−3, 5 , 1e−8, 200) ;
40 Xtv dant = reshape (xp , n , n) ;
41 toc
42

43 % Quadratic r e c o n s t r u c t i o n

11

44 t i c
45 xp qc = t v q c l o g b a r r i e r (xbp , A, At , y , ep s i l on , 1e−3, 5 , 1e−8, 200) ;
46 Xtv qc = reshape (xp , n , n) ;
47 toc
48

49 % Equal i ty r e c o n s t r u c t i o n
50 t i c
51 tv I = sum(sum(s q r t ([d i f f (X, 1 , 2) z e r o s (n , 1)] . ˆ 2 + [d i f f (X, 1 , 1) ; z e r o s (1 , n)] . ˆ 2))) ;
52 xp = t v e q l o g b a r r i e r (xbp , A, At , y , 1e−1, 5 , 1e−8, 200) ;
53 Xtv = reshape (xp , n , n) ;
54 toc
55

56

57 subp lot (2 , 3 , 1) , imshow (X, [0 2 55]) ;
58 t i t l e (” Or i g i na l image ”) ;
59 subp lot (2 , 3 , 2) , imshow (f f t s h i f t (M)) ;
60 t i t l e (” Four i e r samples ”) ;
61 subp lot (2 , 3 , 3) , imshow (Xbp , [0 25 5]) ;
62 t i t l e (” l−2 r e c o n s t r u c t i o n (minimize energy) ”) ;
63

64 subp lot (2 , 3 , 4) , imshow (Xtv , [0 2 55]) ;
65 t i t l e (” Minimize TV r e c o n s t r u c t i o n ”) ;
66

67 subp lot (2 , 3 , 5) , imshow (Xtv qc , [0 25 5]) ;
68 t i t l e (”TV r e c o n s t r u c t i o n with quadrat i c c o n s t r a i n t s ”) ;
69

70 subp lot (2 , 3 , 6) , imshow (Xtv dant , [0 2 55]) ;
71 t i t l e (”TV r e c o n s t r u c t i o n with Dantzig ”) ;

References

[1] M. Rani, S. B. Dhok, and R. B. Deshmukh, “A systematic review of compressive sensing: Concepts,
implementations and applications,” IEEE Access, vol. 6, pp. 4875–4894, 2018.

[2] U. of Delaware, “Richard Baraniuk, ”Compressive Sensing,” ECE Lecturer Series,” 2012. [Online].
Available: https://www.youtube.com/watch?v=RvMgVv-xZhQ

[3] Wikipedia contributors, “Nyquist–Shannon sampling theorem,” 2019. [Online]. Available: https:
//en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon sampling theorem

[4] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling [a sensing/sampling paradigm
that goes against the common knowledge in data acquisition],” IEEE signal processing magazine, vol. 25,
no. 2, pp. 21–30, 2008.

[5] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from
highly incomplete frequency information,” arXiv preprint math/0409186, 2004.

[6] E. Candes and T. Tao, “Near optimal signal recovery from random projections: Universal encoding
strategies?” arXiv preprint math/0410542, 2004.

[7] D. L. Donoho et al., “Compressed sensing,” IEEE Transactions on information theory, vol. 52, no. 4,
pp. 1289–1306, 2006.

[8] Rice University, “Compressive Ssensing Resources,” 2017. [Online]. Available: http://dsp.rice.edu/cs/
#talks

[9] R. G. Baraniuk, “Compressive sensing,” IEEE signal processing magazine, vol. 24, no. 4, 2007.

[10] J. Romberg and M. Wakin, “Compressed Sensing: A Tutorial,” 2007. [Online]. Available: http://web.
yonsei.ac.kr/nipi/lectureNote/Compressed%20Sensing%20by%20Romberg%20and%20Wakin.pdf

[11] J. K. Romberg, “Imaging via compressive sampling,” IEEE Signal Processing Magazine, vol. 25, pp.
14–20, 2008.

12

[12] Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and applications. Cambridge University
Press, 2012.

[13] J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of linear inverse problems,”
Proceedings of the IEEE, vol. 98, no. 6, pp. 948–958, 2010.

[14] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM review,
vol. 43, no. 1, pp. 129–159, 2001.

[15] E. Candes, T. Tao et al., “The dantzig selector: Statistical estimation when p is much larger than n,”
The annals of Statistics, vol. 35, no. 6, pp. 2313–2351, 2007.

[16] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica
D: nonlinear phenomena, vol. 60, no. 1-4, pp. 259–268, 1992.

[17] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Transactions
on signal processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[18] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit: Recursive function
approximation with applications to wavelet decomposition,” in Proceedings of 27th Asilomar conference
on signals, systems and computers. IEEE, 1993, pp. 40–44.

[19] T. Blumensath and M. E. Davies, “Gradient pursuits,” IEEE Transactions on Signal Processing, vol. 56,
no. 6, pp. 2370–2382, 2008.

[20] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery from incomplete and inaccurate samples,”
Applied and computational harmonic analysis, vol. 26, no. 3, pp. 301–321, 2009.

[21] Wikipedia contributors, “Matching Pursuit,” 2019. [Online]. Available: https://en.wikipedia.org/wiki/
Matching pursuit

[22] G. Pope, “Compressive sensing: A summary of reconstruction algorithms,” Master’s thesis, ETH, Swiss
Federal Institute of Technology Zurich, Department of Computer . . . , 2009.

[23] T. Blumensath and M. E. Davies, “Iterative hard thresholding for compressed sensing,” Applied and
computational harmonic analysis, vol. 27, no. 3, pp. 265–274, 2009.

[24] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse prob-
lems with a sparsity constraint,” Communications on Pure and Applied Mathematics: A Journal Issued
by the Courant Institute of Mathematical Sciences, vol. 57, no. 11, pp. 1413–1457, 2004.

[25] S. R. Becker, “Practical compressed sensing: modern data acquisition and signal processing,” Ph.D.
dissertation, California Institute of Technology, 2011.

[26] T. Oliphant, “NumPy: A guide to NumPy,” USA: Trelgol Publishing, 2006–. [Online]. Available:
http://www.numpy.org/

[27] H. Levkin, “Test images,” 2019. [Online]. Available: https://www.hlevkin.com/06testimages.htm

[28] R. Taylor, “Compressed sensing in python,” 2016. [Online]. Available: http://www.pyrunner.com/
weblog/2016/05/26/compressed-sensing-python/

[29] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,”
Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5, 2016.

[30] I. Carron, “Compressive Sensing: the Big Picture,” 2013. [Online]. Available: https://sites.google.com/
site/igorcarron2/cs#reconstruction

[31] MathWorks, “dctmtx,” 2019. [Online]. Available: https://www.mathworks.com/help/images/ref/
dctmtx.html

13

[32] Wikipedia contributors, “JPEG,” 2019. [Online]. Available: https://en.wikipedia.org/wiki/JPEG#
Encoding

[33] ——, “Limited-memory BFGS — Wikipedia, the free encyclopedia,” 2019. [Online]. Available:
https://en.wikipedia.org/wiki/Limited-memory BFGS

[34] R. Taylor, “PyLBFGS,” 2018. [Online]. Available: https://bitbucket.org/rtaylor/pylbfgs/overview

[35] E. Candes and J. Romberg, “l1-magic,” 2005. [Online]. Available: http://statweb.stanford.edu/
∼candes/l1magic/

[36] ——, “l1-magic: Recovery of sparse signals via convex programming,” URL: www. acm. caltech.
edu/l1magic/downloads/l1magic. pdf, vol. 4, p. 14, 2005.

[37] N. University, “Compressed Sensing by Terence Tao.” [Online]. Available: https://www.youtube.com/
playlist?list=PLC94A02A1218B24DF

[38] ICM, “Gauss Prize Lecture: Compressed sensing — from blackboard to bedside — David Donoho —
ICM2018.” [Online]. Available: https://www.youtube.com/watch?v=mr-oT5gMboM

[39] A. Xia, “MIT 6.854 Spring 2016 Lecture 22: Compressed Sensing.” [Online]. Available:
https://www.youtube.com/watch?v=G3WLsZAoTuo

[40] M. Cleve Moler, “”Magic” reconstruction: Compressed sensing,” 2010. [Online]. Available: https:
//www.mathworks.com/company/newsletters/articles/magic-reconstruction-compressed-sensing.html

[41] Miliarde, “Compressed Sensing Intro & Tutorial w/ Matlab,” 2016. [Online]. Available:
https://www.codeproject.com/Articles/852910/Compressed-Sensing-Intro-Tutorial-w-Matlab

[42] S. Brunton, “A Compressed Overview of Sparsity,” 2016. [Online]. Available: https://www.youtube.
com/watch?v=aHCyHbRIz44

[43] Wikipedia contributors, “Broyden–fletcher–goldfarb–shanno algorithm — Wikipedia, the free
encyclopedia,” 2019. [Online]. Available: https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%
E2%80%93Goldfarb%E2%80%93Shanno algorithm

14

